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Kurzfassung

Maschinendaten-Analyse ist ein wichtiger Aspekt in modernen Industrieanlagen, da
Stakeholder und Stakeholderinnen ihre Maschinen so effizient wie möglich nutzen wollen.
Zu diesem Zweck nutzen sie das Industrial Internet of Things (IIoT) und ermöglichen
damit die Analyse von erfassten Maschinendaten. Um nützliche Informationen aus
den aggregierten Daten zu gewinnen, ist Big-Data-Analysis von großer Bedeutung für
die Experten und Expertinnen, welche die Maschinendaten-Analyse durchführen. Die
gewonnenen Erkenntnisse ermöglichen es, die Effizienz der Anlage durch datengetriebene
Entscheidungen zu verbessern.

In dieser Arbeit wird die Realisierbarkeit von multidimensionalem Clustering für Maschi-
nendaten-Analyse in einem webbasierten Umfeld untersucht. Zu diesem Zweck haben
wir eine Anwendung entwickelt, die statistische Verfahren und verschiedene Visualisie-
rungstechniken in einer Weboberfläche vereint und diese anhand ihrer Anwendbarkeit
und Performance bewertet. Basierend auf multivariaten Zeitfolgen von Industrieanlagen
hat die entwickelte Anwendung vielversprechende Resultate erbracht und stellt somit
eine solide Grundlage für weitere Verbesserungen dar.
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Abstract

Machine data analysis is an important aspect in modern industrial facilities, as stakehold-
ers want their machinery to be as efficient as possible. To this end, they utilize the IIoT,
enabling the analysis of gathered machine data. To gain useful information through the
aggregated data, Big Data analytics are invaluable to the domain experts conducting
machine data analysis. The insights gained through Big Data analytics allow for a better
efficiency of the facility by enabling data-driven decisions.

This thesis sets out to explore the feasibility of multidimensional clustering for machine
data analysis in a web-based environment. To do this, we developed an application that
combines statistical methods and several visualization techniques into a web interface.
We evaluated the tool based on its real-world applicability and performance. The
developed application has produced promising results, when employed on multivariate
time series from industrial machinery, and thereby provides a robust foundation for future
improvements.
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CHAPTER 1
Introduction

1.1 Overview
With us being in the era of Industry 4.0, also referred to as the fourth industrial revolution,
the integration of machine sensors, middleware, software and cloud solutions in modern
industrial businesses has become widespread [Gil16]. There are many definitions for
Industry 4.0, which differ in their contents. It was first introduced by Christian Ramsauer
[Ram13]. He states that the essence of Industry 4.0 is to bring current trends of
the information- and communication-technology into industrial production systems.
Industry 4.0 was initiated in 2011 to ensure and strengthen the competitiveness of the
German industry, by creating a guiding principle.

Industry 4.0 can be broken down into nine identified technological trends, as mentioned
by Alasdair Gilchrist in his book on the topic [Gil16]. While all of them are of great
interest, the building blocks IIoT, Big Data and Analytics are our main focus for this
thesis.

The IIoT connects the physical layer of an industrial facility, consisting of sensors, devices
and machinery, to the internet [Mun20]. It thereby enables experts to get a better
understanding of the operational processes and resource usage within a company. This
insight can be used as feedback for the stakeholders to achieve efficiency gains and increase
the productivity, ultimately reducing the costs of the production chain. An example for
this is the employment of predictive maintenance. In this context, sensors, which have
some sort of self-awareness, are used to predict their remaining lifespan. This enables
businesses to create maintenance schedules ahead of time thereby reducing unnecessary
maintenance and subsequently minimizing revenue loss [Gil16].

There are various different sensor types, each offering valuable insights suitable for a wide
range of applications. For instance, temperature sensors are commonly utilized on electric
motors to monitor their operating conditions. This enables experts to quickly identify an
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1. Introduction

overheating motor, thereby preventing severe damage not only to the motor itself but to
the whole facility, by mitigating the risk of an electrical fire. Another example are sensors
measuring the current drawn by a motor. Motors typically draw more power on startup
than they do while running under load. This is because during startup, they need to
overcome inertia and bring the underlying system up to speed. Therefore, sensors enable
the identification and further analysis of the different states that a motor undergoes.

The term Big Data describes datasets, which are not trivial to handle and process in
a meaningful way [FDCD12]. On the one hand, sensor measurements on machinery
provide great insight into the operational process, potentially influencing the business
in a profitable way. On the other hand, the sheer volume and complexity of this data
introduces significant hurdles from an analytical perspective.

To leverage large datasets aggregated from various sensor measurements for the purpose
of enhancing machine efficiency, they need to be processed in a meaningful way. This can
be done by employing the Knowledge Discovery from Data (KDD) process. KDD makes
use of statistical methods to extract hidden data patterns, providing valuable insights
into the operational process of the machinery [HKP12].

1.2 Motivation
In this thesis we deal with multivariate time series, which are aggregated measurements,
including a timestamp, gathered from various sensors on industrial machinery. These
datasets contain measurements that occupy up to over 10 GB of storage space, imposing
a challenge in terms of management and processing.

Our main interest in this thesis is to find the different states the machinery undergoes. We
want to investigate the feasibility of achieving this based on the multivariate attributes
of our datasets. To this end, we want to employ statistical methods on our datasets to
extract hidden data patterns. Moreover, we want to analyse the change in states the
machinery undergoes over time, using the temporal aspect of the datasets.

Finally, we also want to provide a visualization for the found results, so experts can
easily understand and interpret them. To make the visualization easily accessible and
platform independent we are going to explore a web-based approach. This will introduce
further challenges in terms of performance and memory management, due to the size of
the datasets. Therefore, we aim to gain insights into the performance one can expect
from a web-based visualization approach of large-scale datasets.
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CHAPTER 2
Related Work

2.1 Machine Data Analysis

In modern industrial facilities, sensors play a crucial role in enabling the data-driven
decision-making process. They are effectively employed using the IIoT. To this end,
we will go into detail about the IIoT in the following sections, providing examples on
enabling technologies and give a few real-world examples, where the IIoT was successfully
utilized.

2.1.1 The Industrial Internet of Things

We have already briefly introduced the IIoT as one main building block of Industry 4.0.
Gilchrist [Gil16] describes it as one of four vertical strategies of the larger concept Internet
of Things (IoT). The other three strategies include the Enterprise-, Commercial- and
Consumer-IoT. While all these strategies are used to achieve the same result, they target
different end users and therefore employ various strategies [Gil16]. However, there is no
universally accepted definition for the term IoT and they differ in their contents. But all
these definitions have one common aspect. They describe the extension of connectivity
and computational capabilities to various objects, devices, and sensors that are not
thought of as traditional computers [REC15].

In this thesis we will continue to use the term IIoT to refer to the IoT in the context
of industrial disciplines. This includes fields such as energy production, manufacturing,
agriculture as well as healthcare and many more [Gil16].

To get a better understanding of how machine data analytics can be employed within
the IIoT paradigm, we will introduce the basic three-layer architecture and identify the
key technologies in the following sections. Additionally, we are going to provide a few
examples on use-cases in real-world applications.
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2. Related Work

Figure 2.1: The three-layer IIoT architecture taken from the work of Dai et al. [DZZ19].

2.1.2 The Architecture of IIoT

Similarly to the definition, there is no one single architecture for the IIoT [LCH+22].
Qiu et al. [QCZ+20] state that a typical IIoT architecture consists of three layers: the
perception layer, the communication layer and the application layer. This architecture
can be extended to four layers by introducing a service layer between the communication
and application layer. Additionally, Al-Fuqaha et al. [AFGM+15] describe a five-layered
architecture consisting of objects, object abstraction, service management, the application
layer, and the business layer in detail. In this section we briefly introduce the basic
three-layered architecture, which can be seen in Figure 2.1.

Physical Layer

Within the physical layer, also referred to as perception layer, the process of machine
data analysis gets enabled [AFGM+15]. Here, varieties of sensors, actuators, imaging
devices, Radio Frequency Identification (RFID) tags, and similar devices are employed
[LIeHA21]. They are used to gather information such as temperature, weight, motion,
vibration, acceleration, humidity, etc.

Wireless Sensor Networks (WSNs) are a key technology employed within the physical
layer [SKH18, Bor14]. WSNs usually consist of many sensor nodes, measuring a specific
physical information such as temperature for example. The sensed data gets sent wirelessly
to one or more sink nodes, also called base stations, further processing the acquired
data [Bor14]. Other key technologies used in the physical layer include RFID, NFC, and
Bluetooth. These are used for identification of objects as well as communication [SKH18].
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2.1. Machine Data Analysis

Network Layer

After the data has been collected by the physical layer, it needs to be transmitted to
the application layer. The network layer achieves this by facilitating heterogeneous
communication technologies [Bor14]. When using wired technologies, Ethernet and xDSL
are commonly used. They allow for a high data transfer rate [SKH18]. Additionally, they
enable a robust network since they are not as prone to interference problems as wireless
technologies are. However, this comes with the trade-off that physically connecting vast
numbers of devices is costly. Another downside is that changes in the infrastructure
require changes in these wired connections [Bor14]. To counteract these limitations,
wireless communication technologies are commonly employed. Examples of such include
WiFi, WiMAX, and cellular networks, which are attractive alternatives due to their
flexibility [SKH18].

Application Layer

The application layer builds the top layer in the basic three-layered IIoT architecture.
Here, user and application domain-specific services are found. These services use the
gathered data transmitted over the network layer and employ statistical methods on
them to provide intelligent applications [JJBH+20].

To achieve a finer granularity and facilitate generalization, the application layer is
split into the service management layer, the application layer and the business layer
within a five-layered architecture [JJBH+20, SKH18]. The service management layer, also
referred to as middleware layer, performs the information processing and makes automatic
decisions based on the results. The user receives requested services, like temperature
readings, via the application layer. Finally, the process of data-driven decision-making is
enabled by the business layer using Big Data analytics [AFGM+15, JJBH+20].

2.1.3 Security Threats

One major challenge that arises from the usage of thousands of smart interconnected
devices is to ensure certain security objectives. Examples for such objectives include
integrity, confidentiality, availability, authentication and many more [SAF+22]. Schiller
et al. [SAF+22] provide a comprehensive survey identifying existing threats such as
Denial of Service (DoS), Cross Site Scripting (XSS), Man in the middle, Jamming
and Data Tampering, just to name a few. Furthermore, they provide insight into key
countermeasures including new IoT device hardware, authentication technologies, and
forensics.

Our introduction to the IIoT and its architecture provides a brief overview on the topic
as a deep dive into the topic would go beyond the scope of this thesis. However, the book
by Gilchrist [Gil16], as well as the works of Borgia [Bor14], Latif et al. [LIeHA21], and
Al-Fuqaha et al. [AFGM+15] provide further information on enabling technologies and
architectures for the IIoT.
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Figure 2.2: Real time web-based visualization of the fault prediction system proposed by
Syafrudin et al. [SAFR18].

2.1.4 Applications of Machine Data Analysis

As we have mentioned earlier, the IIoT is applicable to various domains. In this section
we are going to provide real-world examples, where machine data analysis was employed
utilizing various aspects of the IIoT.

In their work, Syafrudin et al. [SAFR18] utilize sensors, Big Data processing, and a
hybrid prediction model in combination with the IIoT to provide efficient monitoring
of a manufacturing process. The set of sensors they use to gather information, consists
of temperature, humidity, accelerometer, and gyroscope sensors. The gathered data is
subsequently processed with a clustering-based outlier detection, removing all outliers
from the dataset. They apply a machine learning-based classification model to predict
whether the current measurements indicate a fault of the machinery or not. These results
are subsequently presented in a web-based visualization, shown in Figure 2.2, which
allows the manager to monitor the equipment in real time.
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Anomaly detection within multivariate time series is a crucial aspect of manufacturing.
Tang et al. [TXY+23] deal with the lack of a model, which allows for a better detection
performance, as well as a more reliable interpretability. In their work they propose a
Graph Recurrent Network (GRN) as an interpretable multivariate time series anomaly
detection method. The GRN is based on neural graph networks and gated recurrent
units. The proposed method improves detection performance and allows users to find
the root cause of anomalies, by learning correlations between sensors.

Not all small- to medium-sized facilities can afford IIoT enabling technologies. Kuo et al.
[KTC+17] address this problem by utilizing inexpensive ad-on triaxial sensors to gather
data. They further propose a dimensional reduction method with low computational
overhead. The extracted information then gets fed into a neural network, allowing for
automatic analysis of the aggregated data.

Besides manufacturing, energy production is also a highly interesting field, where machine
data analysis can help to improve the efficiency of various processes. To understand the
current state of a hydropower plant, it is important to monitor attributes like siltation,
current water levels, vibrations, and energy generation, just to name a few [KS22]. Real
time monitoring of such can minimize unwanted failures and therefore improve the overall
performance of the hydropower plant.

An example of this can be found in the work of Silva and Souza [SS21]. They measure
the temperature of bearings, as well as the pressure of the hydraulic speed regulator of a
hydro generator. The gathered data is then preprocessed to remove all outliers from the
dataset. Using a Recurrent Neural Network (RNN), the dataset is analysed to detect
all tendencies of failure. In case the RNN detects an abnormal pattern in the bearing
temperature, the remaining lifespan of the bearing is calculated based on a threshold.
Their experimental results show that their prognosis system can help to avoid unexpected
failures of hydro generator components.

As we have mentioned, the IIoT is also employed in the healthcare sector. Jeong and Shin
[JS18] proposed an IIoT healthcare service model where ambulances are equipped with
IIoT devices connecting them to the hospital’s healthcare service centres. For patients
with implanted medical sensors, this approach allows for quick readings on their medical
needs, which can then be transmitted to the hospital, while the ambulance is still on the
way. Their proposed model can be seen in Figure 2.3.

2.2 Clustering

Clustering is a commonly used data mining technique. Its aim is to partition a given
dataset into clusters based on similarity measures, for example the Euclidean distance
between data points. As a result, instances within the same cluster have greater similarity
to each other, than they do to instances in a different cluster. Clustering can be considered
as one of the most important unsupervised learning techniques [VSC+12, Mad12]. The
term unsupervised means that there is no need to label the dataset prior to being clustered.
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Figure 2.3: Depiction of the proposed healthcare service model from the work of Jeong
and Shin [JS18].

This aspect makes clustering an appealing approach for Big Data, as it circumvents the
laborious and costly task of labelling datasets of such magnitudes. [JMF99].

2.2.1 Clustering Techniques

There are various approaches to clustering, each utilizing its own techniques. Estivill-
Castro [ECY00] points out that this can be attributed to the absence of a widely accepted
definition of a cluster. Therefore, many algorithms have been developed to fit for a
specific domain. Figure 2.4 depicts the taxonomy of clustering techniques. They make
up two major categories, namely hierarchical and partitional ones [RM05].

Hierarchical Clustering Methods

Hierarchical clustering methods form clusters by recursively partitioning the dataset.
This can be done in either a top-down or a bottom-up manner, divisive or agglomerative
respectively. In a divisive approach, the initial dataset is regarded as one cluster, which
is then recursively divided into sub-clusters until a desired cluster structure is achieved.
In an agglomerative approach, each data point initially represents one cluster. These are
then merged until a desired cluster structure is achieved. Hierarchical clustering methods
generate a dendrogram as shown in Figure 2.5, illustrating the clusters at various levels
of detail. [RM05, SPG+17]

Hierarchical clustering approaches can be further divided into Single-Linkage-, Complete-
Linkage- and Average-Linkage Algorithms, as shown in Figure 2.4. These approaches
differ in the distance measures they apply, when merging or dividing the clusters during
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Figure 2.4: Taxonomy of clustering techniques, taken from the work of Saxena et al.
[SPG+17].

the clustering process. Single-Linkage assumes the distance between two clusters to be
the shortest distance of any data point in one cluster to any data point in the other
cluster. In Complete-Linkage this distance is assumed to be the greatest distance between
any data point in one cluster to any data point in the other cluster. In Average-Linkage
algorithms the distance between two clusters is assumed to be the average distance of
each data point in one cluster to each data point in the other cluster [RM05].

There are several drawbacks to these traditional approaches such as their sensitivity to
outliers and the high computational complexity of O(n2), which most of the hierarchical
clustering algorithms have [XW05]. To counteract on these drawbacks, researchers have
proposed a variety of new hierarchical clustering techniques. Examples of such include
BIRCH [ZRL96], CHAMELEON [KHK99] and ROCK [GRS00].

Partitional Clustering Methods

In partitional clustering methods, instances are relocated between clusters to optimize a
specified criterion function. In the case of the sub-group distance-based methods, the
Euclidean distance is commonly utilized for this purpose. It assigns each data point to
the closest available cluster. One algorithm that utilizes this approach is the well-known
k-means algorithm. [RM05, SPG+17]

In contrast to distance-based clustering algorithms, density-based approaches can find
clusters of any arbitrary shape. The basic idea behind such algorithms is to grow a certain
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Figure 2.5: Dendrogram generated by a hierarchical clustering technique. The image was
taken from the work of Saxena et al. [SPG+17].

cluster, as long as there are a number of neighbours which exceed a certain threshold. In
other words, there has to be a minimum number of neighbours in a certain radius around
a data point for it to be added to the cluster [RM05]. Algorithms in this group include
examples such as the DBSCAN [EKS+96] and AUTOCLASS [CS+96].

The last sub-group in partitional clustering methods are the model-based approaches.
Here, mathematical models are utilized, trying to optimize the fit for a certain dataset.
Additionally to a clustered dataset, these methods also find descriptions of the character-
istics for each cluster [RM05]. The most popular methods within this group include the
utilization of Decision Trees and Neural Networks (NNs). One of the most well-known
algorithms in this group is the COBWEB Algorithm [Fis87].

A complete survey on all possible clustering techniques, including advantages and dis-
advantages would go beyond the scope of this thesis. Instead, we focus on the k-means
algorithm, multidimensional clustering, and the practical application of clustering in
various domains in the following sections. Further readings on the topic can be found in
the works of Rokach and Maimon [RM05] as well as Saxena et al. [SPG+17], which offer
comprehensive overviews.

2.2.2 The K-Means Algorithm

The term k-means was first used by MacQueen [M+67] in 1967. Although the idea behind
the algorithm was independently proposed by various researchers [IEA+23]. The steps of
the standard k-means algorithm follow the flow chart in Figure 2.6.

The k-means algorithm requires an input parameter k, which determines the number of
clusters the algorithm produces. At first, k cluster centres, also known as centroids, are
selected from the dataset at random. The centroids and a specified distance function are
then used to calculate the distance from each data point to each centroid. One commonly
used distance function is the Euclidean distance. Subsequently, the data points are
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Figure 2.6: Flow diagram representing the steps of the standard k-means algorithm. The
image was taken from the work of Saxena et al. [SPG+17].

assigned to their closest centroid. In the next step the centroids are recalculated, to
represent the mean position of all data points which are associated with it. These steps
are repeated until the centroid positions no longer change, indicating that no cluster
assignment has changed, or a specified number of maximum iterations is reached. An
illustration of this process can be found in Figure 2.7.

Despite its popularity, there are several drawbacks to the k-means algorithm [PLL99]. For
example, the number of clusters k is not always known beforehand, especially with real-
world applications. Another drawback is the greedy nature of the algorithm. Depending
on the random centroid initialization, only a local optimum can be found [Jai10].

To circumvent these drawbacks, researchers have proposed a vast number of k-means
variants. Sculley [Scu10] proposed a mini-batch variant which only considers b random
examples from the dataset in each iteration. He shows that this approach reduces
the computational costs of the standard k-means by orders of magnitude. Arthur and
Vassilvitskii [AV+07] proposed a k-means variant, which does not initialize the centroids
randomly. Their algorithm, which is known as k-means++, tries to spread out the initial
cluster centres, by choosing them based on a probability proportional to their squared
distance from the closest existing centroid.

There are much more variants of the k-means algorithm, but that would go beyond the
scope of this thesis. The works of Ahmed et al. [ASI20] as well as Ikotun et al. [IEA+23]
provide further readings on the topic.

2.2.3 Multidimensional Clustering

While clustering works well on low-dimensional data, the real-world datasets we deal with
today, consist of a large number of attributes. Since the goal is to automatically conduct
cluster analysis, these algorithms need to be able to handle so called high-dimensional
data. Related work does not draw a consistent line between low- and high-dimensional
data. Some consider 10 dimensions as high-dimensional, while others deal with up to
thousands of attributes [Ass12].
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(a) Centroid initialization (b) Cluster assignment

(c) Centroid recalculation (d) Cluster assignment

Figure 2.7: This series of Images illustrates the clustering process of the k-means algorithm
with k = 3. In (a), three initial centroids are randomly selected. (b) shows the assignment
of all data points to their closest cluster centre. The cluster centres are recalculated in
(c), based on the mean of all assigned data points. Finally, (d) shows the reassignment
of the data points to the newly calculated centroids. The Images are taken from the
Wikimedia Foundation [Wik22].
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Figure 2.8: Overview of clustering applications, taken from the work of Ezugwu et al.
[EIO+22].

One challenge high-dimensional data introduces is the so-called “curse of dimensionality”.
This term was introduced by Bellman [Bel66]. He used the term to describe the impossi-
bility of optimizing a function of many variables by a brute force search [SEK04]. Today
the term is used to refer to a variety of problems, which result from high-dimensional
data.

The “curse of dimensionality” is especially notable with partitional clustering techniques,
such as the k-means algorithm. The assessment of similarity using distance measures
becomes meaningless, since all data points converge to the same distance from a centroid
with increasing dimensions [BGRS99].

There are various approaches to counteract such challenges. One of which is the Principal
Component Analysis (PCA), which reduces the dimension of the data by extracting
the dominant attributes. Applying PCA thereby enables clustering in a reduced space
[WEG87, Ass12]. Another approach is to divide the high-dimensional space into cells
to search for clusters in these cells based on density values [Ass12]. Examples for this
approach include STING [WYM97] and DENCLUDE [HK98].

Another example is the work of Ferreira Cordeiro et al. [FCTMT+11]. In their work they
propose a method to counteract on challenges imposed by large multidimensional datasets.
This is achieved by automatically spotting bottlenecks and choosing an appropriate
counter measure. They additionally report performance measures of the proposed
method. Using 128 cores in parallel they successfully clustered a dataset spanning 0.2
TB, in 8 minutes.

2.2.4 Applications for Cluster Analysis

Clustering algorithms are applicable to various domains. Examples for application areas
are the medical sector, data transfer through networks, privacy protection, and the
financial sector. Figure 2.8 depicts an overview of clustering algorithm applications.
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One aspect of the medical sector where clustering was utilized successfully is the dis-
ease diagnosis. Waheed et al. [WAK+15] proposed an algorithm with the purpose of
automatically segmenting blood vessels. Automatic vessel segmentation is useful for
the screening of ocular diseases. Saha et al. [SAE16] proposed a new semi-supervised
clustering technique for automatic segmentation of Magnetic Resonance (MR) brain
images, which can be utilized for diagnosing neurological disorders such as Alzheimer
disease.
In modern environments, the usage of wireless sensor networks can be an effective tool.
To keep the communication between the sensors and the data processing centre as energy
efficient as possible, Bandyopadhyay and Coyle [BC03] proposed a hierarchical clustering
algorithm. The algorithm generates a hierarchical ordering of the sensors, such that
only a few sensors report to the data processing centre, making the sensor network more
energy efficient.
Clustering is also employed to strengthen the protection of sensitive data from individuals.
To carry out criminal activities, scammers frequently replicate legitimate websites to
deceive victims and acquire sensitive personal data. Drew and Moore [DM14] have
successfully utilized a combined clustering approach that links replicated scam websites
together. This simplifies their identification and the following elimination. A high-level
diagram of their proposed method is shown in Figure 2.9.
Money laundering poses a significant threat in the financial sector. It refers to the
concealment of money acquired through criminal activities. Yang et al. [YLL+14]
employed the DBSCAN algorithm to detect and report suspicious transactions. They
tested their application on a large transactional dataset and found that their approach
effectively identifies suspicious transactional activities.
Clustering has also been successfully utilized in aviation. Specifically for fault detection,
emergency management, and proactive risk management. A concrete example is the work
of Li et al. [LDJH+15]. They employed DBSCAN to detect abnormal flight from routine
airline flights, based on data gathered from various flight data recorders.
Finding and handling throughput bottlenecks is an important aspect in manufacturing.
Avoiding such bottlenecks can help industrial business to increase their efficiency. Sub-
ramaniyan et al. [SSM+20] proposed a hierarchical clustering approach to determine
such bottlenecks. This enables domain experts to set improvement actions, subsequently
increasing the system throughput.
These are just a few of countless real-world applications, which utilize clustering. Further
readings on applications for clustering can be found in the works of Ezugwu et al.
[EIO+22], Oyewole and Thopil [OT23], as well as Ghosal et al. [GND+18].

2.3 Information Visualization
While computers are great with numbers, we humans can hardly interpret them. This
becomes especially difficult when dealing with Big Data. Given that humans are primarily
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Figure 2.9: An illustration of the method, used to simplify the identification of scam
websites, proposed by Drew and Moore [DM14].

visual learners, a visual representation of the dataset is essential to gain useful insights.
This is where Information Visualization (InfoVis) becomes a crucial aspect of Big Data
analytics.

InfoVis is used to explore data and communicate results. It thereby provides a way to
lower the cognitive and analytical effort enabling experts to make informed data-driven
decisions [FGJ+20]. A widely accepted definition for InfoVis comes from Card et al.
[CMS99]. They describe InfoVis as “the use of computer-supported, interactive, visual
representations of data to amplify cognition.”

In their book on the topic, Kerren et al. [KSFN08] provide a great example of how visuals
can augment the human memory. If we consider a large multiplication in our head, most
people will struggle to memorize all numbers and keep track of the intermediate results
without writing them down. But if we were to use a pencil and paper, this task becomes
way easier since the paper acts as a memory aid.

2.3.1 The Information Visualization Process

The InfoVis process is no trivial task, since people perceive graphical representations
differently. Additionally, finding the best fitting visualization technique for an application

15



2. Related Work

comes as a challenge with countless different approaches. However, the process of finding
such a graphical representation can be simplified to adjustable mappings, leading from the
raw data to a visual representation, enabling the user to perceive the desired information
in a meaningful way [Car09]. In the literature, this is referred to as the visualization
reference model. Figure 2.10 illustrates this model.

Figure 2.10: Depiction of the reference model for visualization. This Image is from the
work of Card et al. [CMS99].

In this section of the work we introduce the three steps encapsulated in the InfoVis
process, starting with Data Tables.

Data Tables

Data transformations are used to bring the raw data, which is possibly in some id-
iosyncratic format, into the canonical form of Data Tables [Car09]. In this context,
idiosyncratic refers to data, which is formatted in an unusual, non-standard way. This
could, for example result from an application, which outputs data in a way, such that
only the specific application can read and write it.

Table 2.1 depicts an example of such a Data Table, representing three different lecture
halls. The attributes, which make up one object are depicted in the left outermost
column.

RoomID DC02H03 HEEG02 DEU116
Name FH 1 FAV 1 Informatikhörsaal
Floor 1.OG EG 1.UG
Size 473m2 87m2 303m2
Capacity 400 108 389

Table 2.1: An example for a Data Table, representing lecture halls at TU Vienna.

One essential aspect to note with variables is that they imply a certain scale of measure-
ment. Card [Car09] distinguishes the three most important ones:
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N Nominal values, which are either = or ̸= to other values,

O Ordinal values, which obey a < relation and

Q Quantitative values, which can be used in arithmetic calculations.

With these scales at hand, we can extend the Data Table with additional meta-data,
namely the corresponding scale for each attribute implied by its variables. Table 2.2
illustrates this extension.

RoomID N DC02H03 HEEG02 DEU116
Name N FH 1 FAV 1 Informatikhörsaal
Floor O 1.OG EG 1.UG
Size Q 473m2 87m2 303m2
Capacity Q 400 108 389

Table 2.2: The original Data Table extended with meta-data showing the scale type of
the different attributes.

Data transformations allow to alter the scale type of an attribute [Car09]. One example
would be the transformation of the quantitative attribute Capacity, into an ordinal
attribute. This can be achieved by constructing different classes and mapping certain
value ranges to a specific class. Table 2.3 shows the mapped Capacity attribute to the
classes Small, Medium, and Large. While this is often useful in practice, it is important
to note that the data transformation comes with an information loss.

RoomID N DC02H03 HEEG02 DEU116
Name N FH 1 FAV 1 Informatikhörsaal
Floor O 1.OG EG 1.UG
Size Q 473m2 87m2 303m2
Capacity O Large Small Medium

Table 2.3: The original Data Table, with the altered scale type of the Capacity attribute.

Visual Structures

Card [Car09] introduces the visual mappings, leading from Data Tables to Visual Struc-
tures, as the most important step in the process. This comes as no surprise, since a
bad mapping can results in a visual representation, which provides no, or even worse,
wrong insight into the underlying dataset. To circumvent this, a multitude of constraints
need to be considered when applying visual data mappings. One crucial constraint is the
expressiveness of the visual mapping. A visualization is considered to be expressive if
and only if it captures the intended data relations [Car09].

InfoVis processes involve different types of visual mappings, some of which we are going
to briefly introduce in the following.
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Figure 2.11: Various different types of marks. The Image is taken from the work of Card
[Car09].

Spatial Substrate The spatial substrate describes which, and equally important how,
data is mapped into its spatial position. Card [Car09] describes it as the most powerful
mapping. This comes from the fact that humans can easily distinguish different values
and find patterns amongst them, based on their position.

Marks Marks correspond to the visual representation of data points. They come in
four main types: Points, Lines, Areas, and Volumes, as shown in Figure 2.11.

Connection As the name suggests, this visual mapping can encode additional infor-
mation by connecting marks in the visualization. One example for this would be the
dendrogram, which we introduced in Section 2.2.1. In this context, the connections are
used to illustrate the hierarchical structure of the underlying data.

Retinal Properties Retinal properties include the size and the orientation of marks,
as well as their color and texture. Figure 2.12 illustrates commonly used retinal properties.
Card et al. [CMS99] divide them into four groups. So called “retinal variables“ in the
Extent group are good at representing the extent of a scale, which has a natural zero
point. The ones present in the Differential group are commonly utilized to differentiate
between various marks. Additionally, they are divided into spatial and object properties.

Views

View transformations lead to the final view, which is subsequently perceived by the user.
This step of the process includes three transformations:

1. Location Probes - Here, the location of a mark is used to visualize additional
information bound to that specific Data Table entry. An example for this would be
a details-on-demand window that shows up when the user clicks on a mark in the
visualization [CMS99].

2. Viewpoint Controls - Such controls use affine transformations of the view. Examples
include zooming, panning, and clipping [CMS99].
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Figure 2.12: Retinal properties divided into four groups, taken from the work of Card et
al. [CMS99].

3. Distortion - Distortions are used to manipulate the Visual Structure. This method
enables the user to create a focus on a specific are of the view [CMS99].

An exhaustive examination of the InfoVis process, including all transformation possibilities
in the process, would go beyond the scope of this thesis. To this end, we refer the reader
to the works of Card et al. [CMS99] and Card [Car09] for further information.

2.3.2 Visualization Techniques

In this section of the work we focus on well-known visualization techniques. To stay
organized with the countless visualization approaches, we are going to divide this section
into uni-, bi- and multivariate visualization techniques.

Univariate Visualization Techniques

Univariate Visualization techniques are employed to analyze the value distribution of a
single attribute. There is a variety of univariate visualization approaches. In the following
we briefly introduce two commonly used ones, namely the histogram and the box plot.

Histogram To show the frequency distribution of values in a single attribute, histograms
first bin the values into predefined ranges. In the second step, the number of values within
each bin is counted to obtain the respective frequency. Finally, the bins are represented
by drawing rectangles. The width of a rectangle, represents the range of values in the
respective bin, while the height reflects the number of values in the bin. Figure 2.13
illustrates an example of a histogram.

Histograms have a broad application domain. They are commonly employed in statistical
environments to obtain a graphical summary of random samples, as well as an estimation
of the underlying probability density function [Sco10]. Another example is the usage
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Figure 2.13: An example for a histogram, taken from Data Viz Project [Fer24].

of histograms in visual computing, where they are utilized for image segmentation and
enhancement [VS09, PRG12].

Box Plot Box plots are commonly utilized to summarize a range of values. They
consist of five main features used to obtain a graphical representation of the median, the
first and third quartile as well as the extreme values of the underlying data. Velleman and
Hoaglin refer to this as the 5-number summary [VH81]. Figure 2.14 shows an example of
a box plot, depicting a normal distribution. The box represents the middle half of the
values. This box is separated by a line, representing the median of the data. The two
lines extending from the box are called whiskers and indicate the range of the values,
that are not extreme enough to be seen as outliers [FHI89].

Bivariate Visualization Techniques

Bivariate visualization techniques are employed, if the correlation between two attributes
is of interest. Similarly to univariate visualization techniques, there are countless examples
for setting two variables into relation. Examples include scatter plots, line graphs, heat
maps, and bubble charts.

Scatter Plot The scatter plot is one of the most used visualization tools. It is unclear
who invented the scatter plot, as it was developed progressively over the years. However,
Friendly and Denis [FD05] suggest that the first scatter plot was created by John F. W.
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Figure 2.14: An example of a box plot, illustrating a normal distribution. The Image is
from the work of Verma and Ranga [VR20].

Herschel in 1833 [Her33]. In his work he employed a scatter plot to show the positional
angle of double stars relative to the year of observation.

To present data in scatter plots, the attribute values of data points are converted into
coordinates. This can be done for two- and three-dimensional datasets in the forms (x, y)
and (x, y, z) respectively. With that, each attribute is represented by one axis [DKZ13].
This enables quick identification of possible correlations between attributes, as well as
the detection of clusters and outliers in the dataset [MG13]. Figure 2.15 illustrates a two-
(Figure 2.15a) and a three-dimensional (Figure 2.15b) scatter plot.

Despite their popularity, scatter plots also have downsides. One of such, is the problem of
overlapping points in large scale datasets, as described by Mayorga and Gleicher [MG13].
As the number of overlapping points increases, it becomes difficult to spot clusters and
outliers in the scatter plot. Mayorga and Gleicher proposed the Splatterplot to circumvent
this problem, by limiting the visual complexity of highly overlapping regions.

As we have seen, scatter plots can encode more than two dimensions. However, this often
leads to hardly readable visualizations [EDF08]. A more sophisticated approach would
be to use a multivariate visualization technique.

Multivariate Visualization Techniques

Data involving more than two dimensions can be visualized using multivariate visualization
techniques. Such methods can help to understand the relations and interactions between
multiple attributes. In the following, we will introduce two commonly used approaches.
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(a) Two-dimensional scatter plot (b) Three-dimensional scatter plot

Figure 2.15: Examples for a two- and a three-dimensional scatter plot taken from Data
Viz Project [Fer24].

Scatter Plot Matrix A Scatter Plot Matrix (SPLOM) consists of n2 individual scatter
plots, which are arranged in a symmetrical array. Here n denotes the dimension of the
dataset at hand. Each scatter plot represents one of all possible attribute combinations
[DKZ13]. This allows the user to explore all dimensions of the dataset at once, while
maintaining easy to see correlations [AEL+09]. Figure 2.16 illustrates a scatter plot
matrix of a four-dimensional dataset.

To reduce the computational costs and free up space in the visualization, SPLOMs are
often reduced in size. They only need to contain n(n− 1)

2 of the n2 scatter plots, since
not all of them show new information. This can be seen well in the example presented in
Figure 2.16. The positive correlation shown in the diagonal of the matrix comes with
no surprise, since here the same attribute is set in relation with itself. Additionally, the
scatter plots above the diagonal are mirrored images of the ones below the diagonal,
making them redundant.

The work of Torres et al. [TEMB+12] is one example of the broadly diversified application
domains of SPLOMs in cluster analysis. They proposed a visual analytics system to allow
researchers to explore the National Health and Nutrition Examination Survey (NHANES)
dataset. To do so, Torres et al. employed the k-means algorithm and visualized the
cluster results using a SPLOM.

One problem that comes with SPLOMs is, that with increasing values and attributes,
contained in the dataset, the individual scatter plots shrink in size. While the SPLOM
still provides an overview and presents the structure of the dataset, the user’s ability to
gain useful information about it is restricted [EDF08].
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Figure 2.16: A SPLOM of the Iris Dataset. The image was taken from the work of Kirk
[Kir12].

Parallel Coordinates Like scatter plot matrices, parallel coordinates allow the user
to explore data patterns within multivariate datasets. Instead of multiple scatter plots,
parallel coordinates depict all attributes as parallel axis [Weg90]. An example can be
found in Figure 2.17. The attribute values of one data point are encoded in its respective
axis and subsequently connected via a polyline [Weg90]. Therefore, one polyline in the
parallel coordinates plot represents one data point.

With the example in Figure 2.17, one challenge with parallel coordinates becomes clear.
Parallel coordinates of large-scale datasets become very cluttered. To circumvent this
problem various variations of parallel coordinates have been proposed. An example is
the work of Zhou et al. [ZYQ+08]. In their work they propose a technique to reduce the
visual clutter by using curved lines, which allows them to bundle neighbouring ones.

Guo et al. [GWY+11] used parallel coordinates among two other visualization techniques
to gain information about trajectories in intersections. Their visual analytics system
TripVista, allows users to get insight into regular traffic patterns, as well as to discover
abnormal behaviours.
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Figure 2.17: Parallel coordinates of a car dataset, setting attributes like the number of
cylinders, the horsepower and the weight of cars into relation. This image was taken
from the work of Bowen Yu [Yu24].

Additional literature on parallel coordinates and their variations can be found in the
works of Heinrich and Weiskopf [HW13] as well as Inselberg [Ins09].

This concludes our introduction to commonly used visualization techniques. An exhaustive
enumeration of all visualization techniques would go beyond the scope of this thesis.
Further readings on visualization techniques can be found in the work of Kirk [Kir12].
Additionally, Data Viz Project by Ferdio ApS [Fer24] provides various examples of
different visualization methods.
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CHAPTER 3
Implementation

As an initial step for this chapter, we will outline the task definition for the application:

• Task T1: Data loading and normalization.
The user should be able to load a dataset, which is stored as a Comma-Separated
Values (CSV) file. The loaded data should subsequently be normalized to ensure
meaningful clustering results.

• Task T2: Clustering.
The user should be able to cluster a specified dataset.

• Task T3: Result Visualization.
The application should present the results in a meaningful way, such that the user
is able to interpret the obtained clustering results.

• Task T4: Interactivity.
The user should be able to adapt the parameters for the clustering process.

In the remainder of this chapter, we will guide the reader through the implementation
process based on the defined tasks, talking about the used methods and the challenges
we faced along the way and how we dealt with them.

3.1 Dataset Related Tasks

In this section of the work, we are going to focus on the dataset and the related tasks,
which we mentioned in Task T1. This includes a short introduction to the CSV file
format, followed by the data loading and normalization methods. Finally, we are going
to talk about our data aggregation approach.
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3.1.1 Comma-Separated Values

Our test datasets, which we utilized during the development process, as well as the
real-world datasets we aim to analyze using the developed tool, are stored in the CSV
file format.

CSV files are commonly used to exchange information between various computers
and programs. However, there is no formal definition to the structure of the format.
Shafranovich [Sha05] describes the basic concept, which most of the CSV specifications
and implementations follow. A CSV file consists of multiple records, where each record
is located in a separate line. Each record should contain the same number of fields with
each being separated by a comma, hence the name. Shafranovich [Sha05] states that
there may be an optional header line, with the same format as the records. The header
line contains the names of the corresponding fields. Table 3.1a illustrates an example of
a simple CSV file.

Name, Age, Country
Alice, 30, USA
Bob, 25, Canada
Charlie, 35, UK

(a) CSV example

Name Age Country
Alice 30 USA
Bob 25 Canada

Charlie 35 UK

(b) Table example

Table 3.1: An example illustrating the similarity between the CSV file format (a) and
traditional tables (b). CSV files can be easily transformed into tables and vice versa.

3.1.2 Data Loading

Initially, we utilized D3’s [BO24] CSV parser to read the contents of the dataset and
store them in memory for further processing. However, such an approach is not sufficient
for our purposes, since the datasets we want to analyze exceed sizes of 1 GB, and can
grow up to over 10 GB. Meaning it is not possible to have the whole dataset in memory
at once. To circumvent this issue we employed the usage of stream objects, available in
the node environment.

Streams

Streams allow the handling of large files by sequentially reading or writing data from
or into a file, based on the type of stream. The basic concept of streams is depicted
in Figure 3.1. A stream only processes small chunks of data at a time, additionally
providing a buffer to temporarily save the chunks before they get processed. This comes
with the great benefit, that there is no need to load the entire dataset into memory
before processing it. Due to this benefit, we heavily utilized streams throughout the
whole implementation process.
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Figure 3.1: The basic concept behind node stream objects. The Image is taken from the
work of Nazarii Romankiv [Naz22].

3.1.3 Data Preprocessing

When applying statistical methods, such as clustering, in the KDD process, data prepro-
cessing is one of the most important steps in the process [GRGL+16]. Data preprocessing
comes in various forms, as illustrated by Figure 3.2. It includes cleaning, transformation,
normalization, missing value imputation, and many more operations. While all of them
are critical for successful pattern extraction on a dataset, we limited ourselves to the
data normalization process, assuming that there are no missing values or similar issues
with the dataset, as this would go beyond the scope of this thesis.

Data Normalization

Data normalization maps the numeric values of features into a common range. Most
commonly the ranges [0, 1] and [−1, 1] are used. This transformation ensures that features
with higher values do not dominate the features with lower values in the clustering
process [SS20]. This is especially important if utilizing distance based metrics such as
the Euclidean distance.

Achieving data normalization with streams requires two passes over the dataset. The
first pass is necessary to find the minimum and maximum values for each attribute.
Thereafter, the second pass is used to map the original values into the normalized range
according to Equation 3.1.

x⃗′
i = x⃗i − m⃗in

m⃗ax− m⃗in
(3.1)
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Figure 3.2: Visualization of various data preprocessing processes, taken from the work of
García et al. [GRGL+16].

Here, x⃗i and x⃗′
i represent the original and the normalized row vector respectively, m⃗in

and m⃗ax hold the minimum and maximum values for each attribute.

3.1.4 Data Aggregation

We have already introduced one challenge that comes from the large amounts of data
we aim to process, which we circumvented with the employment of streams. Another
challenge imposed by such large files is the computation time necessary to complete tasks
such as clustering, normalization, and rendering.

To counteract the high computation times we applied data aggregation on obtained
results, saving them as new CSV files. This is achieved with the usage of node’s writable
streams, which are similar to readable streams. Instead of providing new chunks of data,
they consume provided chunks and send them to the specified target storage, which in
our case are newly created CSV files.

We applied this method on the normalized data, the clustering results, as well as the

28



3.2. Clustering Approach

SPLOM render results and on the timeline calculations. The SPLOM and the timeline
are further discussed in the Sections 3.3.1 and 3.3.2, respectively.

With the data aggregation method in place, the developed application checks if there
are any intermediate results saved for the specified dataset, before investing computa-
tional efforts. This greatly increases the usability of the application, since subsequent
computation requests of the same dataset are almost instantaneously presented to the
user. Additionally, this approach allows users to utilize the clustering results in other
applications for the visualization. Alternatively, users can import pre-clustered data into
our application for visualization.

3.2 Clustering Approach
In this section of the work we go into detail about the selected clustering methods and how
we implemented them in our web-based environment. This section therefore corresponds
to the aforementioned Task T2.

3.2.1 The K-Means Algorithm

The first task was to decide which clustering algorithm we are going to utilize. The
k-means algorithm is a popular choice in the literature. This comes from the algorithm’s
fairly low time complexity as well as its simplicity. Due to this, we also chose to utilize
the k-means algorithm as our clustering approach.

As the algorithm is so popular, there is a variety of packages available on npm [npm24],
which implement the k-means algorithm. Initially, we wanted to utilize one of these
packages. However, since the datasets we want to cluster require the usage of streams,
we can not utilize the standard k-means algorithm, as it does not support the sequential
nature of streams. Therefore, we opted to use a variant of the algorithm.

The Sequential K-Means Algorithm

The sequential k-means algorithm is a modification of the traditional algorithm. The
motivation behind the algorithm is to start the clustering process, before the whole
dataset has been observed. The algorithm allows this by keeping track of the numbers of
data points, that have already been assigned to the centroids. For every new data point,
that gets assigned, this counter is increased by one. Additionally, the position of the
centroid is updated based on its current position and the position of the new data point,
weighted by the number of assigned points. This calculation can be expressed by the
following equation:

ci ← ci + 1
ni

(x− ci), (3.2)

where ci is the position of the i-th cluster centre, ni is the number of data points assigned
to the i-th cluster centre and x is the position of the newly assigned data point [Kin12].
The pseudo code of the sequential k-means algorithm is shown in Algorithm 3.1. It
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presents a single pass over the dataset. This process is repeated until a certain number of
iterations is reached, or the cluster centres have converged, meaning they do not change
their position any further.

Depending on the dataset as well as the input parameters, the clustering process can
become quite time consuming. To support a faster convergence of the process, we utilized
the mini-batch k-means variant in combination with the sequential k-means algorithm.

Algorithm 3.1: Sequential K-Means Algorithm
1 Randomly initialize k cluster centres c1, ..., ck

2 Initialize k counters n1, ..., nk to zero
3 S ← new Stream over the dataset;
4 for each element x ∈ S do
5 if ci is closest to x then
6 ni ← ni + 1;
7 ci ← c1 + 1

ni
(x− ci);

8 end
9 end

The Mini-Batch K-Means Algorithm

The mini-batch k-means algorithm, which we briefly introduced in Section 2.2.2, was
proposed by Sculley in 2010 [Scu10]. The aim of the algorithm is to reduce the time
complexity of the traditional k-means algorithm. This is achieved by only considering b
random data points in each iteration, until the cluster centres converge or the maximum
number of iterations is reached. The final step of the algorithm is to assign all data
points, which have not been considered so far, to the cluster centre closest to them.
Algorithm 3.2 presents the corresponding pseudo code.

One challenge that arises with both algorithms, is the step of initializing k random cluster
centres. This is due to the fact that we are utilizing streams, meaning we do not have
the whole dataset in memory and therefore can not simply pick k random samples. To
enable the random initialization in combination with streams we employed the reservoir
sampling method.

3.2.2 Reservoir Sampling

Reservoir sampling is used to select n random samples from a dataset, where the size
is either very large or unknown, as it is the case with streams. This approach was
introduced by Vitter [Vit85]. The first step of reservoir sampling fills a reservoir of size
n with the first n examples of the dataset. The following examples are only placed in the
reservoir, randomly replacing already existing examples, if a certain probability is met.
The conventional reservoir sampling implementation is illustrated in Algorithm 3.3.
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Algorithm 3.2: Mini-Batch K-Means Algorithm
Input: k, mini-batch size b, iterations t, dataset X

1 Randomly initialize k cluster centres c1, ..., cn

2 Initialize k counters n1, ..., nk to zero
3 for i = 0 to t do
4 M ← b random examples from X;
5 for x ∈M do
6 if Ci is closest to x then
7 ni ← ni + 1;
8 η ← 1

ni
;

9 ci ← (1− η)ci + ηx;
10 end
11 end
12 end
13 for x ∈ X do
14 assign x to closest ci

15 end

Algorithm 3.3: Conventional Reservoir Sampling Algorithm
Input: The reservoir size n, the data stream S
Output: An array of n random samples

1 index← 0;
2 for each element s ∈ S do
3 index← index + 1;
4 if index ≤ n then
5 reservoir[index− 1]← s;
6 else
7 p←Math.trunc(Math.random()× index);
8 if p < n then
9 reservoir[p]← s;

10 end
11 end
12 end
13 return reservoir
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With the used k-means algorithm variants and the initialization method out of the way,
one problem introduced by the k-means algorithm remains, i.e., finding the best fitting
number of clusters.

3.2.3 The Elbow Method

The Elbow Method is a commonly utilized graphical approach to find the optimal number
of clusters for the k-means algorithm. The first step with this method is to calculate the
Within Cluster Sum of Squares (WCSS) for each number of clusters k that are taken
into consideration. The computation is shown in Equation 3.3.

wcss =
k∑

i=1

∑
x∈Ci

|x− Ci|2, k ∈ [1, 10] (3.3)

Here, x is an element assigned to the cluster centre Ci and k is the number of cluster
centres. In our work we only considered k in the range from one to ten, as more cluster
centres are usually not needed.

The next step is to create a connected scatter plot showing the number of clusters in
relation to their WCSS, respectively. Figure 3.3 shows an example of such a plot. It
comes naturally that the decrease in the WCSS is high with a low number of clusters.
The magnitude of this decrease gets smaller if approaching the optimal number of clusters.
Overshooting the optimal number of clusters results in a flat line, as visible in Figure 3.3.
This results in an elbow shaped plot, where the k-value of the elbow point is considered
the optimal number of clusters [LD20]. Therefore, the optimal number of clusters for the
dataset presented in the example would be three.

3.3 Data Visualization
With the data handling and clustering implementations at hand, the last task is to
present the found results in a meaningful way. Our application features three different
visualizations, which are implemented using D3 [BO24]. We have already covered the
first visualization, the Elbow Method, in Section 3.2.3. The following sections discuss
the remaining two visualization techniques we utilized.

3.3.1 Scatter Plot Matrix

To visualize an overview over the clustered dataset, we decided to employ the usage of a
SPLOM. The theoretical introduction to SPLOMs can be found in Section 2.3.2. In this
section we will provide a detailed perspective on how we implemented this visualization.

The first task implementing the SPLOM, was to create the basic structure of the
visualization. As Figure 3.4 shows, we only visualize n(n− 1)

2 of the n2 scatter plots,
due to the redundancies mentioned in Section 2.3.2. Additionally, we do not render the
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Figure 3.3: An example plot of the elbow method. This plot suggests k = 3 as the
optimal number of clusters for the given dataset.

positive correlation in the cells where the same attribute is used for both axis, but rather
just show the attribute’s name. These optimizations make the plot seem less cluttered
and additionally reduce the computation time needed to render the clustering results.

The next step in the process was to introduce the cluster results to the plot. Our initial
approach was to utilize the data binding options included in D3.

Data binding using D3

D3 binds the provided data and the created graphical elements directly to the Document
Object Model (DOM). This allows for precise control over the visualization. Additionally,
such an approach allows for an easy extension with advanced analysis features. Examples
of such features include brushing or a details on demand window.

However, due to the size of the datasets we aim to analyze, and the way D3 directly
manipulates the DOM, such an approach is not feasible. Since D3 creates a new DOM
element for each data point in the dataset, the DOM would consist of millions of elements
trying to visualize our dataset. This results in poor performance and eventually crashes
the application.

To circumvent this problem we opted to instead use the canvas element provided by the
HTML5 standard.
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Figure 3.4: The basic structure of the SPLOM in our application.
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Rendering with the Canvas element

The Canvas API provides means to get the rendering context of a canvas element, which
is used to render elements onto the canvas. The rendering context provides various
methods to draw common shapes such as squares and circles. However, using these
methods to draw each data point in our dataset proved to be quite inefficient.

Therefore, we made use of the direct pixel manipulation possibilities provided by the
rendering context. This approach involves the creation of a so called “ImageData“ object
and manually setting the color of each pixel. We refer to the work of Steve Fulton and
Jeff Fulton [FF13], as well as the documentation by Mozilla [Moz24] for further reading
on the process, as a more detailed description would greatly inflate this section of the
work. Using this approach for the rendering, greatly increased the performance, making
it suitable for our application.

With the basic structure, created with D3, at hand, we overlayed each cell of the SPLOM
with a canvas element using the described rendering approach. This results in the finished
SPLOM, as illustrated in Figure 3.5.

3.3.2 Timeline

The aim of this thesis is to find various states, industrial machinery undergoes over
time. To visualize such a change over time we implemented a stacked bar chart using
D3. Figure 3.6 provides an example of the visualization. The x- and y-axes represent
the number of measurements and the local time when the measurement was taken,
respectively. Each color in the plot corresponds to one cluster. This visualization thereby
provides information about the distribution of the data points over the different clusters.
Furthermore, the timeline illustrates how this distribution might change over time. To
allow for a broader applicability of the timeline, we implemented a time-span selector.
This enables the user to either represent the data divided by hours or by days, depending
on the temporal resolution of the dataset at hand.

This concludes the implementation process of our application. At last, Figure 3.7 shows
an overview of the whole web interface. The interface includes various control elements
in correspondence to Task T4, allowing the adaptation of the clustering parameters as
well as the visual presentation.

Technical Details

For the implementation process, we utilized node [Ope24] version 18.17.0 in combination
with npm [npm24] version 10.4.0. As a build tool, we opted to use vite [You24], which
allows for quick testing during the development, due to its hot reload feature. We used
Microsoft’s TypeScript [Mic24] as our programming language, since the static typing
TypeScript provides, greatly increases the readability of the code. We utilized GitHub
[Git24] as our version control system. The current version of our project [Kla24] is
publicly accessible under the MIT License [The24].
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Figure 3.5: An example image of the SPLOM with the clustering results of a test dataset.
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3.3. Data Visualization

Figure 3.6: The implemented stacked bar chart, illustrating one of our test datasets.

Figure 3.7: An overview of the web interface of the implemented application.
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CHAPTER 4
Results and Evaluation

This chapter of the work is concerned with two major objectives. First, we are going to
provide a qualitative analysis of two real-world datasets. This will provide insight into
the real-world applicability of our application. The second part of this chapter focuses
on a quantitative evaluation. During development we ran several performance tests with
variable dataset sizes, thus giving insight into the computational performance of our
application.

4.1 Qualitative Evaluation

This section of the work deals with the qualitative evaluation of two real-world datasets.
The first dataset contains measurements from centrifugal pumps, while the second dataset
deals with various hydropower plant measurements.

4.1.1 The Centrifugal Pumps Dataset

This dataset is from the work of Mallioris et al. [MDBB24]. It contains measurements
depicting the healthy and maintenance-prone stages of two centrifugal pumps. Each data
point has five key attributes, namely temperature, velocity, demodulation, acceleration,
and peak-to-peak acceleration. Mallioris et al. refer to the last four attributes as vibration
parameters, as high values in these attributes usually indicate out of norm vibrations
within the machine.

We utilized this dataset to perform Confirmatory Data Analysis (CDA), using the results
from the work of Mallioris et al. [MDBB24] and comparing them to the clustering results
obtained from our application.
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Evaluation

The clustering results for the centrifugal pumps dataset are illustrated in Figure 4.2.
Since the timeline visualization does not show any significant change in states over time,
we are going to focus on the SPLOM and examine the two different clusters based on
their respective attribute values. To this end, we have included Figure 4.3 to increase
the readability of the SPLOM.

Machine ID As mentioned above, the dataset contains measurements from two distinct
centrifugal pumps. One in a healthy and one in a maintenance-prone condition, illustrated
as blue and red clusters, respectively.

Velocity The attribute value_ISO corresponds to the velocity, denoting the rotational
speed of the centrifugal pumps [MDBB24]. Mallioris et al. state that a high velocity
measurement typically indicates an imbalance or misalignment inside the machine. Despite
the fact that the blue and red cluster correspond to a healthy and a maintenance-prone
machine, there is no significant distinction to be recognized, based on the velocity of the
two machines. Most values are found in the range [0.0, 0.25], with a few extreme values.

Demodulation The attribute value_DEMO corresponds to shocks observed via de-
modulation measurements. Demodulation is helpful for the early bearing failure detection
[MDBB24]. As it can be seen in Figure 4.3, there is a clear distinction between the
healthy and the maintenance-prone pump, indicating that the second machine might
have faulty bearings.

Acceleration Mallioris et al. [MDBB24] state that value_ACC is the ratio of speed
and direction shifts over time, which might reveal gear defects when detected. Simi-
larly to value_DEMO, the red cluster, corresponding to the faulty machine, is clearly
distinguishable with higher values than the blue cluster.

Peak-To-Peak Acceleration Peak-to-peak acceleration refers to the maximum dis-
tance between the vibration spectrum’s negative and positive peaks. The amplitude
shows the intensity of the vibration and thereby depicts the severity of the machines
condition [MDBB24]. Figure 4.3 shows a clear separation between the two machines on
this attribute, indicating out of norm vibrations within the maintenance-prone pump.

Temperature Although temperature measurements are typically a clear indicator for a
faulty motor, the SPLOM in Figure 4.3 does not show such a pattern. The measurements
show similar temperatures for both machines. This suggests that environmental factors,
rather than the machines themselves, may have affected the temperature readings.

The results we found with the developed application coincide with the results Mallioris
et al. reported. Each of the attributes value_DEMO, value_ACC, and value_P2P
shows a clear distinction between the healthy and the maintenance-prone machine, while
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4.1. Qualitative Evaluation

Figure 4.1: This illustration of machine condition degradation over time shows that
a overheating machine becomes nonoperational in a matter of days. However, if the
machine data analysis only yields unusual vibration within a machine, it could take
months until the machine fails. This image is taken from the work of Mallioris et al.
[MDBB24].

value_ISO and valueTEMP do not. However, it is important to also consider the later
two attributes in the analysis. A motor that is overheating, for instance, is in significantly
worse shape than one with merely unusual vibrations, as shown in Figure 4.1.
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4.1. Qualitative Evaluation

4.1.2 The Hydropower Plant Dataset

In this section of the work, we employ Exploratory Data Analysis (EDA), based on
the aforementioned hydropower plant dataset. Since this dataset contains confidential
information, we are not going to go into detail on the attributes. However, Dipl.-Ing.in
Dr.in Johanna Schmidt from the Competence Centre VRVis, ran the developed application
on two aggregated datasets and provided the obtained results for this section of the work.

The two datasets contain numerous measurements from the months April and June 2022,
occupying 17 MB and 29 MB of space, respectively. Both clustering runs were performed
on 25 attributes. This resulted in a hard to read SPLOM, as visible in Figure 4.4. Despite
this setback, we were still able to obtain intriguing insights into various machine states
that the hydropower plant goes through using the timeline visualization. In addition, we
were able to detect a change in these states over time.

Evaluation

With the introduction of the dataset out of the way, we are going to start our analysis
on the results for the month of April.

April The clustering results for the month of April can be found in Figure 4.4a. The
SPLOM is hardly readable due to the number of attributes. This problem should be
addressed in future iterations of the application, by utilizing the exploratory visualization
method called scagnostics. Scagnostics were developed by John and Paul Tukey and
later refined and published by Wilkinson et al. [WAG05]. The idea behind scagnostics is
to reduce a visual task in complexity by calculating a small number of measures of the
distribution of a scatter plot.

Due to the hardly readable SPLOM, our analysis is going to focus on the timeline
visualization, which can be seen in Figure 4.5a.

When examining the visualization, two characteristics of the data stand out. The first
one being varying numbers of measurements per day. This indicates that the hydropower
plant was not as active on the 4th, with only around 50 recorded measurements, as
opposed to the 29th, where over 1400 measurements were taken. The reason for such
fluctuations could be due to differences in energy consumption as well as the influence of
changing weather conditions.

The second characteristic that stands out in the visualization is the change in the power
plant’s operational mode, indicated by the different cluster colors. The last third of the
timeline is very green heavy as opposed to the first two thirds, which are mostly red. We
believe that this shift in operational modes correlates with the melting of snow as we
approach the end of April.

June Taking a look at the clustering results from June in Figure 4.5b, we again see
fluctuations in the operating time of the hydropower plant. However, they are not as
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4. Results and Evaluation

Figure 4.3: The SPLOM visualization from Figure 4.2, to increase the readability.

drastic as they were in April. Furthermore, the machinery was mostly run with the same
operational settings, indicated by the high red share in the timeline. Occasionally the
plant’s operational mode was switched, as illustrated by the green, blue, and orange
clusters, but it was mostly stable. We assume that these transitions are linked with
changes in the weather conditions.

Comparing both results we can conclude that the power plant was more active in the
month of June, while also being more stable in its operational mode. This could be
attributed to more steady weather conditions, as April is notorious for weather swings.
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4.1. Qualitative Evaluation

(a) Clustering results from the month of April

(b) Clustering results from the month of June

Figure 4.4: Clustering results obtained from the aggregated hydropower plant datasets.
Specifically, (a) and (b) show the results from the months April and June, respectively.
The SPLOMs are hardly readable due to the number of attributes.
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4. Results and Evaluation

(a) The timeline visualization from the month of April

(b) The timeline visualization from the month of June

Figure 4.5: The timeline visualizations visible in Figure 4.4. Since our analysis is based
on these visualizations, we included them to increase the readability. Again, (a) and (b)
show the results from the months April and June, respectively.
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4.2 Quantitative Evaluation
We ran several performance tests to evaluate the computational time the application
takes, across different dataset sizes. In the following sections we discuss the experimental
settings as well as the results of the performed tests.

4.2.1 Experimental Settings

The performance tests were conducted on a Windows machine with an Intel Core i7-9700k
and 16 GB of Random Access Memory (RAM). We tested the application on two distinct
parameter settings. In the first setting the tests were performed with a batch size of
b = 0, meaning that the mini-batch k-means algorithm was not utilized and all data
points were considered during the clustering process. The second setting used a batch
size of b = 10000. Here, only 10000 data points were considered in each step of the
clustering process. Both settings had the maximum number of iterations set to 100 and
the clustering process was performed on seven attributes.

It is important to note that we performed these tests on test datasets. Using the
application on real-world datasets of such magnitude could thereby result in higher
running times due to different convergence behaviours.

4.2.2 Results

The results of the performance tests for b = 0 and b = 10000 are illustrated in the
Tables 4.1 and 4.2, respectively. As we are utilizing the Elbow Method, the clustering
process has to be performed for each k ∈ [1, 10], as mentioned in Section 3.2.3. To this
end, the column “Clustering“ shows the overall time it took to partition the given dataset
into each of the k clusters. Similarly, the column “WCSS“ shows the overall computation
time for the WCSS of each cluster. “Timeline“ and “SPLOM“ depict the computation
times for the two visualization methods.

Comparing the two experimental results clearly shows the performance increase introduced
by the mini-batch k-means algorithm. Clustering the 2 GB dataset with a batch size of
b = 0, meaning all data points are considered, took ∼18 minutes to finish. With a batch
size of b = 10000 however, this time was reduced to ∼2.7 minutes. This is in line with
the reduction in computation costs, as mentioned by Sculley [Scu10]. Additionally, this
is the reason why we did not include datasets with a size larger than 2 GB in the first
experimental setting, as a batch size of b = 0 would not be feasible for larger datasets.

Table 4.2 shows, that our implementation for the timeline and the SPLOM calculations,
are quite inefficient for larger datasets. The calculation for the timeline took ∼17.8
minutes and ∼29.5 minutes for the SPLOM, for processing the 10 GB dataset. These long
computational times are attributable to an inefficient implementation, which currently
reads from two streams, matching the actual data from the dataset with the clustering
results from a separate file. This implementation approach needs to be reconsidered in
future versions of the application. Saving the outcomes of the clustering process in a file,
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Performance tests with i = 100, b = 0 and a = 7.
File Size in GB Clustering WCSS Timeline SPLOM ∑
0.5 11:43.566 00:17.700 01:01.754 01:40.889 14:43.909
1 16:33.703 00:36.983 02:03.717 03:18.216 22:32.619
2 18:08.054 01:03.189 03:36.153 05:51.995 28:39.391

Table 4.1: The results of the performance tests with maximum iterations i = 100, batch
size b = 0 and number of attributes a = 7. The file size is given in GB and the results
are presented in the format mm:ss.f , where f denotes fractions of a second.

Performance tests with i = 100, b = 10000 and a = 7.
File Size in GB Clustering WCSS Timeline SPLOM ∑
0.5 00:44.845 00:16.096 01:02.334 01:39.966 00:03:43.241
1 01:33.132 00:30.223 02:04.507 03:19.544 00:07:27.406
2 02:39.054 00:57.406 03:39.431 05:50.579 00:13:06.470
4 05:28.498 01:48.276 07:18.983 12:09.943 00:26:45.700
6 08:14.277 02:42.467 10:49.115 17:58.027 00:39:43.886
10 13:39.805 04:56.906 17:49.011 29:30.498 01:05:56.220

Table 4.2: The results of the performance tests with maximum iterations i = 100, batch
size b = 10000 and number of attributes a = 7. The file size is given in GB and the
results are presented in the formats mm:ss.f and hh:mm:ss.f , where f denotes fractions
of a second.

File Size in GB Number of Data Points in Millions
0.5 4.4
1 8.8
2 15.5
4 32.4
6 48.3
10 79.1

Table 4.3: The number of data points per dataset. The numbers are rounded to the
nearest 100,000.

which contains a copy of the original dataset, could improve the performance, as this
approach would eliminate the need to read from two streams simultaneously. However,
the data aggregation approach, which we introduced in Section 3.1.4, counteracts the
poor performance by persisting the results for later usage. It thereby greatly enhances
the usability of the application from its current state.
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CHAPTER 5
Conclusion and Future Work

In this thesis, we discussed the importance of the IIoT for the employment of machine
data analysis in modern industrial businesses, which allows stakeholders to maximize
the efficiency of their machinery, by analyzing the numerous operational states that the
machinery goes though over time. To facilitate such Big Data analytics, we developed
a web-based application capable of clustering multivariate time series, gathered from
industrial machinery. Based on the visualization techniques employed in our application,
experts are able to make data-driven decisions that can improve the performance of the
industrial facility.

Although the implemented application proved to be a robust starting point, there is
room for improvements. Therefore, we guide future work on this matter in the following
sections.

One major problem that arises from the usage of the Elbow Method, is its ambiguity.
This can be seen in Figure 3.7 as well as Figure 4.4, where the elbow plot does not
contain a sharp elbow point. Additionally, the Elbow Method requires the k-means
algorithm to be ran multiple times, which introduces additional computational costs.
Future work could explore different methods for determining the optimal number of
clusters. Alternatively, future work could examine the applicability of other clustering
approaches such as density-based methods.

The current state of the application is quite inefficient for rendering visualizations for
larger datasets, limiting its usability. The task of rendering is currently done in parallel
on the Central Processing Unit (CPU). Offloading this task to the Graphics Processing
Unit (GPU) using for example WebGL could greatly increase the performance of the
application.

Besides the rendering performance, we also encountered two display problems with
the visualizations. The first one being overlapping bars in the timeline, due to a too
fine-grained temporal resolution. If the dataset to be processed was accumulated over
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several months, and with the timeline only having a maximum temporal resolution of
days, the individual bars start overlapping. This can be avoided by introducing weeks
and months as additional resolutions. Alternatively, the timeline could be extended by a
scroll feature.
The second problem we encountered is the hardly readable SPLOM, resulting from a high
number of attributes to visualize. This issue could be resolved by the aforementioned
scagnostics or by introducing viewpoint controls to the SPLOM. In addition to that,
future work could enhance the SPLOM with a better visualization approach for categorical
attributes, as the current version treats them as quantitative values. This is seen in
Figure 4.3. Using box plots rather than separate scatter plots would be more appropriate
for categorical features.

In conclusion, this thesis developed a web-based, multidimensional clustering tool for
analyzing the operational states of industrial machinery over time. We demonstrated the
feasibility of such an approach by evaluating the performance of the developed application
and provided recommendations for further improvements.
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